Table of Contents

Narrative	
EXECUTIVE SUMMARY	ii
1.0 PROJECT INTRODUCTION	1
2.0 PROJECT GOALS	1
3.0 INTEGRATION	1
4.0 CLIMATIC CONDITIONS	1
5.0 FOOD WASTE TO ENERGY	2
6.0 QUAD-GENERATION	3
7.0 HYBRID CONDENSER WATER SYSTEM	4
8.0 GREENHOUSE DESIGN	5
9.0 NATURAL HVAC	9
10.0 FIRST FLOOR SYSTEM	13
11.0 ENERGY SAVINGS	13
12.0 DESIGN ADAPTABILITY	14
13.0 CONCLUSION	15

Supporting Documentation						
References	А					
Climate and Weather Data	В					
Anaerobic Digestion Analysis	C					
Geothermal Well Analysis	D					
Greenhouse Transformation	E					
Greenhouse Design	F					
Transpiration	G					
Greenhouse CO ₂ Concentrations and Emissions	Н					
Water Usage	I					
Water Collection						
Natural HVAC	К					
Integrated Bulk Air Flow/Energy Model	L					
Chilled Beam and Radiant Fin Tube Design	М					
Energy Usage	N					
Quad-Generation Cost Analysis	0					
Cooling and Heating Load Calculations	Р					
Ventilation and Exhaust Calculations	Q					
Pump and Fan Calculations	R					
Fire Suppression and Life Safety	S					
Indoor Air Quality and Acoustics	Т					

Drawings	
Basement Mechanical Plan	M101
First Floor Mechanical Plan	M102
Second Floor Mechanical Plan	M103
Second Floor UFAD Plan	M104
Greenhouse Module	M105
Natural HVAC	M106
Waterside Diagram	M107
Airside Diagram	M108
Plumbing & Fire Suppression Riser Diagram	M109
Equipment Schedules	M110

APPENDIX A – REFERENCES

Software:

IES Virtual Environment 2014

Autodesk Revit 2015

Google Sketchup 2014

Trane TRACE 700

Engineering Equation Solver

Microsoft Word, PowerPoint, Excel 2013

Codes:

Wisconsin Commercial Buildings – Administrative Code

Florida Building Codes

International Mechanical Code 2012

International Fuel Gas Code 2012

International Plumbing Code 2012

Handbooks and Standards:

ASHRAE 90.1-2013: Energy Standard Except for Low-Rise Residential Buildings

ASHRAE 62.1-2013: Ventilation for Acceptable Indoor Air Quality

2007 ASHRAE Handbook – HVAC Applications

2013 ASHRAE Handbook – Fundamentals

2009 ASHRAE Pocket Guide

ASHRAE UFAD Design Guide- 2013

Advanced Energy Design Guide for K-12 School Buildings

HVAC Equations, Data, and Rules of Thumb

References:

- 1. "Building Technologies Group." U.S Department of Energy (n.d.): n. pag. Web.
- 2. Eisenmann. "Sustainability in an Urban Environment through Anaerobic Digestion." An Overview of How One Urban Farm Is Fighting the Food Desert Epidemic by Utilizing Anaerobic Digestion to Create a Net-Zero Energy System (n.d.): n. pag. Web.Eisenmann
- 3. Noren, Corfitz. "Evaluation of CO2-fertilization of a Greenhouse with Flue Gases from a Microturbine." Arbetsrapport SGC A32 (2002): n. pag. Web.
- 4. Matthey, Johnson. Gas Turbine Oxidation Catalyst (n.d.): n. pag. Web.
- 5. "Water Detail Lincoln Creek, Milwaukee River South Watershed (MI02)."Water Detail Lincoln Creek, Milwaukee River South Watershed (MI02). N.p., n.d. Web. 8 Nov. 2014.
- 6. "Plant Growth Factors: Temperature." Plant Growth Factors: Temperature. N.p., n.d.
- 7. "Transpiration The Water Cycle.", from USGS Water-Science School. N.p., n.d. Web.
- 8. Salazar, Tomas, and Dr. Cecilia Stanghellini. "An Estimate of Greenhouse Transpiration, Condensation and Natural Ventilation Fluxes." Thesis Farm Technology Group (2010). Print.
- 9. "TABLE Z-1 Limits for Air Contaminants. 1910.1000 TABLE Z-1." TABLE Z-1 Limits for Air Contaminants. -1910.1000 TABLE Z-1. N.p., n.d. Web.
- 10. Mediterranean Workshop On New Technologies, Of Recycling Non Conventional Water, and In Protected Cultiv. The Watergy Greenhouse: Improved Productivity and Water Use Efficiency Using a Closed Greenhouse (n.d.): n. pag. Web.
- 11. Sheaffer, Craig C., and Kristine M. Moncada. Introduction to Agronomy. Clifton Park, NY: Delmar, 2009

APPENDIX B - CLIMATE & WEATHER DATA

Climate Data: A detailed climatic analysis of both Milwaukee and Miami climates was performed in order to determine the cooling and heating loads present and to properly size mechanical equipment. The graphs displayed represent the climate for Milwaukee, WI.

Temperature Distribution: A side by side comparison of the Milwaukee climate to the Miami climate. The Milwaukee climate features an evenly distributed temperature range over the course of a year. Hot stresses dominate the Miami climate for most of the year. The airside mechanical systems are designed to perform in both climates.

IES VE Climatic Conditions: A graphical representation of the Milwaukee climate displays when the hot and cold stresses occur during a typical meteorological year. Weather conditions are comfortable in June and September, while July and August need comfort cooling. The heating loads dominate the majority of the year for Milwaukee.

 Nilwauke, Wi
 Growing Power

 Vertical Farm
 Milwauke

 Vertical Farm
 Milwauke

Figure M4: Department of Energy Climate Map of United States. Milwaukee, WI is located in Zone 6 and Miami, FL is located in Zone 1

Miami, FL

	Weather Data:						
5	Milwaukee, WI						
	CDD(50.0) = 2654.3 HDD(65.0) = 6159.7 Annual Average Wind Speed = 13.15 mph Annual Rainfall = 34 inches						
	Miami, FL						
FL	CDD(50.0) = 9403.8 HDD(65.0) = 130.3 Annual Average Wind Speed = 9.68 mph Annual Rainfall = 56 inches						

APPENDIX C – ANAEROBIC DIGESTION ANALYSIS

PARTICULATE FILTER

CONDENSATE DRAIN

Anaerobic Digester Selection: A plug-flow mesophilic anaerobic digester was selected to create usable biogas for the Vertical Farm. The digester produces approximately 2.2 million BTU/hr of usable biogas and has a total footprint of 3,600 square feet. The digester is sized to produce enough energy for both the Vertical Farm and existing greenhouses on site.

IJ

CONDENSATE

DRAIN

FUEL GAS COMPRESSOR

REFRIGERATED GAS DRYER

MICROTURBINE

Biogas Pretreatment System: A pretreatment system is needed to eliminate all water from the biogas.

- *Liquid/Gas Separator* Separate usable biogas from liquid. Condensate is drained out of system.
- Fuel Gas Compressor Compress biogas to a cool temperature. Produces condensate and eliminate all water within the biogas
- *Refrigerated Gas Dryer* A dryer is used to increase the cool biogas in order to raise the temperature above the dew point of the microturbine

APPENDIX D – GEOTHERMAL WELL ANALYSIS

Geothermal Location: The hybrid condenser water system consists of a geothermal well that will pump a maximum of 450 gallons per minute of groundwater that will be used in conjunction with the condenser water loop. An extensive code analysis was done to ensure that the geothermal can be implemented and installed on the site. The Wisconsin State Legislature NR 812: Well Construction and Pump Installation was carefully reviewed to determine the placement of the geothermal well. The optimal location was for the well to be placed in the northeast corner of the site due to the large distance separation it needs to be from the anaerobic digester (orange). The purple circles denote the minimum distance that is required from the well.

Geothermal Well Location Parameter Checklist							
Item	Distance Separation	Parameter Met [Yes/No]					
buried gravity flow sanitary building drain	8 feet	Yes					
buried gravity flow sanitary building sewer	8 feet	Yes					
buried storm collector sewer or stormwater culvert	8 feet	Yes					
buried sanitary building drain or sanitary building sewer	25 feet	Yes					
buried pressurized sanitary building sewer	25 feet	Yes					
animal barn or animal shelter	50 feet	Yes					
animal yard	50 feet	Yes					
animal barn pen	50 feet	Yes					
bulk surface storage tank or other container with a capacity greater than 1500 gallons or any bulk buried storage tank including, for both surface or buried tanks, regardless of capacity, any associated buried piping, for any solid, semi- solid, or liquid product, including any associated above ground piping	100 feet	Yes					
solid waste processing facility	250 feet	Yes					
solid waste transfer facility	250 feet	Yes					

Average Groundwater Temperatures: The EPA publishes a map displaying the average shallow groundwater temperatures around the country. The Mechanical Team took advantage of the 47°F average groundwater temperature in Milwaukee, WI by providing a hybrid condenser water system.

APPENDIX E- GREENHOUSE TRANSFORMATION

	Level 4 Level 4	Level 2 Cavity Removal	Level 4 Level 4 Level 2 Eliminate Linused Space				
Changes that Occured	Original design from competition provided drawings by TKWA Architects.	Greenhouses were adjusted so that there is no longer a large rain/snow collection gap between each tier.	Transition to a single slope glazing system with a smaller growing volume. North portion received very little daylight and therefore was eliminated from the greenhouse.				
Daylight Delivery	Large glazing area will provide ample daylight to top plants, although the large volume will create shading issues for lower crops.	Similar daylight issues as initial design. The north facing sloped glazing lets in diffuse light. North covered areas in the rear do not receive adequate daylight for sustained plant growth.	Decreased growing area is optimal for limiting self shading between crops. Back of greenhouse spaces that did not receive light have been removed and used elsewhere.				
Ventilation	Open loop system, 100% Outside Air	Open loop system, 100% Outside Air	Open loop system, 100% Outside Air				
Adaptability	Angle of glazing is not optimized	Snow accumulation between greenhouses will become an issue.	Single slope glazing is optimal for Miami but works well in Milwaukee as well. Reduced heating and cooling in all climates due to reduced glazing area.				
Constructability	Tall structure requires concrete and steel system with precast beams. Not ideal. Snow and Rain gutter between greenhouses will cause problems	Similar issues as initial design. Shared walls between greenhouses are difficult to coordinate and construct.	Simple to construct but large top slant poses logistic issues.				
Heating and Cooling	Height of greenhouse will cause stratification resulting in a non-homogenous growing environment	Height of greenhouse will cause stratification resulting in a non-homogenous growing environment. Less glazing than initial design helps.	Less glazing. Reduced stratification resulting in a more homogenous growing enviornment.				
Operation Maintenance	Greenhouse is 20' high. This will require a rotational plant system that may have failures and maintenance issues	Similar issues as initial design. Tall growing area will pose problems.	Easier maintenance issues with regards to farming operations. Angled slope is still difficult to maintain				
Cost (construction and operation)	Cost of construction will be high due to large floor to ceiling heights	Cost of construction will be high due to large floor to ceiling heights	Reasonable cost due to repeatability				

Synthesis Design

Utilize similar single slope design however stagger tiers and coordinate heights by floor in order to decrease shading.

Module design creates optimum lighting requirements for specific carbon three plants. Steel structural system minimizes shading and shade mounted system has adequate support.

Closed loop heating and cooling system. Lots of benefits including lower loads and increased controllability

Cooling system, pest control, and carbon dioxide fertilization is sized for Miami. The exact same module can be used anywhere.

Optimal due to consistent and reasonable sized steel and glazing. Allows trusses to be preassembled and trucked to site.

Refer to Mechanical Report

Easier maintenance issues with regards to farming operations. Angled slope is still difficult to maintain

Cost is decreased due to prefabrication offsite and waste is decreased.

APPENDIX F- GREENHOUSE DESIGN

The greenhouse design provided in the original drawings transitioned from an open, ventilated greenhouse to a closed greenhouse. The closed greenhouse provides four advantages:

- 1. Reduced Water Usage
- 2. Increased CO₂ concentration
- 3. Pest Control
- 4. Temperature and humidity control

The major components of the closed greenhouse are illustrated and explained. Aluminum Mullion: A thermal bridge mullion is placed at each southern wall to create a cold surface for condensation to collect and to be used as greywater.

> Thermal Divider: Divides each module into two thermal zones. A 2 ft. gap between the divider and southern wall allows the hot air to rise and enter into the top thermal zone.

Retractable Shade: Helps direct sun from

increasing the cooling load demand. See

entering into the greenhouses and

Figure X for performance details

Greenhouse Solar Heat Gain: The greenhouse retractable shades not only ensure that plants receive the correct amount of light, but significantly reduce the cooling load in the greenhouses. The figure below displays the reduction in solar heat gain as a result of the shades.

Stormwater Drain: Located on top of each greenhouse module to collect stormwater that is used as greywater for the Vertical Farm.

> *Cooling Coil:* Located in the shaft of each greenhouse module. The condenser water loop supplies 50F water to cool the air to 65F. The cool, dense air falls and maintains the greenhouses at a temperature of 85F and 90% RH.

Fin Tube Radiators: Placed along the southern wall of each module to supply hot air to maintain a 70F temperature in the greenhouses during the heating season.

> **Custom Greenhouse Control System:** Temperature and humidity sensors monitor conditions in the lower greenhouse zone. The cooling system is activated when the temperature exceeds 85°F or RH exceeds 90%. Heating is provided via fin tube convectors when temperatures fall below 70°F

IES MacroFlo Simulation: A bulk airflow model was performed for both Milwaukee and Miami locations to determine if the cooling system was able to maintain the temperature set points needed in each module throughout the cooling season. From simulations, it was determined that the necessary amount of airflow needed to cool the space is supplied. The arrows and numbers indicate the direction of airflow movement and the flow rate (cfm),

respectively. As expected, air is funneled out into the top thermal zone dividing the cool air supplied from the hot stratified air.

APPENDIX G – TRANSPIRATION

Transpiration Model (Stanghellini)

Rn - S - LE = 0

 $E = \frac{\frac{\varepsilon r_b R_n}{L} + 2LAI(X_{in}^* - X_{in})}{(1 + \varepsilon)r_b + r_s}$

 $R_n = 0.86[1 - \exp(-0.7LAI)]I_{rad}$

$$r_{s} = 82 \frac{\frac{R_{n}}{2LAI} + 4.3}{\frac{R_{n}}{2LAI} + 0.54} [1 + 0.023(T_{in} - 24.5)^{2}]$$

$$E = g_c (X_{crop} - X_{in})$$

 $g_e = \frac{2LAI}{(1+\varepsilon)r_b - r_s}$

 $\varepsilon r_b[0.86(1-\exp(-0.7LAI))I_{rad}]+2LAI(\chi_{in}^*-\chi_{in})$ $\frac{\varepsilon T_{b}[0.50(1-\exp(-0.7LAI))I_{rad}}{(1+\varepsilon)R_{b}+[82\frac{2LAI}{0.86(1-\exp(-0.7LAI))I_{rad}+4.3}}{(1+\varepsilon)R_{b}+[82\frac{2LAI}{0.86(1-\exp(-0.7LAI))I_{rad}+5.4}}[1+0.023(T_{in}-24.5)^{2}]]}$ E =

- (1) Energy balance on a leaf
- (2) Canopy transpiration through the Penman-Monteith approach
- (3) Net radiation at crop level can be estimated as function of global radiation and LAI
- (4) Stomatal resistance as a function of net radiation at crop level and greenhouse temperature
- (5) Equation (2) rearranged as a transfer equation
- (6) Transpiration conductance
- (7) Substitute terms

Variable	Variable Name	Units				
R _n	Net Radiation	W/m ²				
L	Latent Heat of	J/g				
_	Vaporization of Water	•78				
S	Sensible Heat Flux	W/m ²				
E	Transpiration Flux	σ/m^2 c				
	Density	g/111 - S				
rs	Stomatal Resistance	s/m				
	Boundary Layer	c /m				
۲b	Resistance to Heat	S/11				
LAI	Leaf Area Index	m²/m²				
v	Greenhouse Water					
Ain	Vapor Concentration	g/m				
	Saturated Greenhouse					
X* _{in}	Water Vapor	g/m³				
	Concentration					

1

Latent Load vs. Leaf Area Index: The Mechanical Team assumed a Leaf Area Index of 3 to compute the amount of transpiration produced in the greenhouses. The Leaf Area Index describes the ratio of leaf area to ground surface area. The LAI for a Vertical Farm produces would be characterized as slightly higher

Latent Load in Greenhouses [BTU/hr]										
		02 Gree	enhouse	03 Gree	nhouse	04 Gr	eenhouse	05 Greenhouse		
LAI	E [BTU/hr-ft ²]	Latent Load [BTU/hr]	# of People	Latent Load [BTU/hr] # of People		Latent Load [BTU/hr]	# of People	Latent Load [BTU/hr]	# of People	
1	76	56595	283	56746	284	53616	268	122101	611	
1.5	98	73198	366	73394	367	69346	347	157922	790	
2	114	84981	425	85209	426	80508	403	183343	917	
2.5	125	93331	467	93580	468	88419	442	201356	1007	
3	133	99359	497	99625	498	94130	471	214362	1072	
4	142	106781	534	107067	535	101161	506	230374	1152	
5	147	110748	554	111044	555	104919	525	238932	1195	
6	150	112999	565	113301	567	107051	535	243789	1219	
7	151	114397	572	114703	574	108376	542	246806	1234	
8	152	115373	577	115681	578	109300	547	248910	1245	
9	153	116137	581	116448	582	110025	550	250560	1253	
10	153	116797	584	117110	586	110650	553	251984	1260	

Transpiration Model: The amount of transpiration produced by plants was calculated to account for the latent load in each greenhouse. The Stanghellini model accounts for the transpiration rate produced given a certain Leaf Area Index (LAI) of a greenhouse. The amount of transpiration is then used to calculate the amount of sensible cooling that is happening due to the evaporation of water. The closed greenhouse prevents the transpiration produced to escape out into the atmosphere.

Latent Load vs. Leaf Area Index

APPENDIX H- GREENHOUSE CO2 CONCENTRATIONS AND EMISSIONS

CO₂ Greenhouse Concentrations

Rate of Accumulation of Contaminant = Flow in – Flow Out

 $c_a = \text{Concentration of Incoming CO}_2$

 $c = \text{Concentration of CO}_2$ absorbed from plants

 $V\Delta c = (Qca - Qc)\Delta t$

 $c = 0.12 \frac{kg}{hr - 100m^2} = 2 \frac{lbm}{hr}$ Concentration of CO₂ absorbed by plants for all greenhouses

 $c_a = 625 \frac{lbm}{MWh} * \frac{200kW}{1000} = 125 \frac{lbm}{hr}$ Concentration released from 200kW microturbine

Heat Exchanger Capacity: $\dot{q} = \dot{m}C_p(T_1 - T_2) = 160 \frac{BTU}{hr}$

Carbon Dioxide:

greenhouses.

Carbon Dioxide Concentrations: The amount of CO₂ needed to supply

the greenhouses was determined from the rate of CO₂ absorbed by

also be reduced in order to supply the exhaust gases to the

Carbon Dioxide Flow Schematic

plants in each greenhouse. The temperature of the exhaust gas must

Exhaust Gas Bypass: To distribute the required amount of carbon dioxide to the greenhouses, the following schematic is used. During start-up, it will be positioned in a by-pass mode to avoid unburned methane entering the greenhouses. Once the CO_2 concentration target of 1000 ppm is reached, the exhaust gases will be diverted to the atmosphere.

Microturbine Emissions: An advantage of the microturbine is that it produces ultra-low emissions compared to other CHP turbines and engines. An oxidation and SCR catalyst are also installed downstream of the microturbine to reduce CO and NOx emissions by 90%. The concentration of CO and NOx produced is well below the OSHA 8-hour exposure limit making it acceptable to enrich the greenhouses with CO₂.

Exhaust Gas Heat Exchanger: Converts waste heat from the microturbine exhaust into hot water for space heating. Parameters of the heat exchanger are listed below.

Exhaust Gas Heat Exchanger								
Exhaust Gas Flow [lbm/hr] 10,440								
Hot Water Flow [GPM]	120							
T1 [F]	535							
T2 [F]	180							
T3 [F]	135							
T4 [F]	160							

APPENDIX I – WATER USAGE

Fixture In	nformation	Duration		Flow Rate	Flow Rate		Uses per Day	Uses per Day					Total Daily	Uses	Total Daily Water Use		
Fixture ID	Fixture Type	Default (sec)	Non-default (sec) (Optional)	Baseline Flow Rate (gpm/gpc)	Design Flow Rate (gpm/gpc)	Percent of Occupants (%)	Employees (FTE)	Visitors	Retail Customers	Students (K-12)	Residential	Other	Default	Non-default (Optional)	Baseline (gallons)	Design (gallons)	
	Kitchen faucet 15			2.20	1.8	10	1.0	0.0	0.0	0.0	0.0		50.0		2.75	2.25	
	Showerhead	300		2.50	2.2	10	0.1	0.0	0.0	0.0	0.0		5.0		6.25	5.5	
	Public lavatory (restroom) faucet	30		0.50	0.3	100	3.0	0.5	0.0	0.0	0.0		500.0		125.00	75	
							0.0	0.0	0.0	0.0	0.0		0.0		0.00	0	
							0.0	0.0	0.0	0.0	0.0		0.0		0.00	0	
Baseline case annual flow volume (gallons/year)					48,910.00												
Design case annual flow volume (gallons/year)						30,203.75											

Fixture In	oformation		Flush Rate			Uses per Day						Total Daily Uses			Total Daily
Fixture ID	Fixture Family	Fixture Type	Baseline Flush Rate (gpf)	Design Flush Rate (gpf)	Percent of Occupants (%)	Employees (FTE)	Visitors	Retail Customers	Students (K-12)	Residential	Other	Default	Non-default (Optional)		Baseline (gallons)
	Urinal	Non-Water Urinal	1.00	0	100	2.0	0.4	0.00	0.0	0.0		190.0			190.00
	Toilet (male)	Low-Flow Water Closet	1.60	1.2	100	1.0	0.1	0.00	0.0	0.0		60.0			96.00
	Toilet (female)	Low-Flow Water Closet	1.60	1.2	100	3.0	0.5	0.00	0.0	0.0		250.0			400.00
						0.0	0.0	0.00	0.0	0.0		0.0			0.00
						0.0	0.0	0.00	0.0	0.0		0.0			0.00
Baseline case annual flush volume (gallons/year)					250,390.00										
Design case annual flush volume (gallons/year)															

Baseline Proposed Potable Proposed Non-Potable

Baseline water fixture flow rates and uses per day were calculated per LEED NC-2009 Water Use Reduction. Water efficient fixtures were selected to reduce flow rates. Figure MX displays a water usage breakdown by source. The greenhouses use the majority of the water in the building; however, with a closed greenhouse, all of the water is collected and reused as greywater for plants. This explains why the Vertical Farm uses 98% less potable water than the baseline building.

Water Use Design (gallons) 72 300 0

An indoor water usage calculator determined the number of gallons of water used in the baseline model compared to the proposed. Efficient plumbing fixtures helped reduce the amount of potable water used.

APPENDIX J – WATER COLLECTION

Rainfall Collected

Month	Average Rainfall (in)
January	1.8
February	1.7
March	2.1
April	3.5
May	3.2
June	3.9
July	3.7
August	3.9
September	3.1
October	2.7
November	2.8
December	2
Total	34.4

The grey water storage tank was sized based off the amount of rainwater collected annually, water from condensation in greenhouses, and from the amount of condensation on the cooling coils located in each supply tower. The Mechanical Team calculated the total amount of water collected from all sources and sized a tank that could hold the maximum amount of water collected. The graph above displays the displays a water usage profile during a typical day and the capacity the storage tank will need to hold.

Total Annual Rainfall [inches/year]	34.4
Total Roof Area [square feet]	12360
Total Annual Rainfall Collection [gallons/year]	265031
Total Daily Rainfall Collection [gallons/day]	726

Rainwater Collection

Greenhouse Water Collected

	Greenhouse Water Usage							
Floor	Zone Name	Area [ft²]	Water Usage per Area [Gallons/ft²-day]	Water Usage Per Day [Gallons/day]				
2	02 Greenhouse	2242	0.4	897				
3	03 Greenhouse	2248	0.4	899				
4	04 Greenhouse	2124	0.4	850				
5	05 Greenhouse	4837	0.4	1935				
			Total	4580				

Storage Tank Demand

Demand	Storage
[Gallons]	Tank
190.8	205
190.8	205
190.8	205
190.8	205
190.8	205
190.8	205
190.8	205
190.8	205
227.61	205
227.61	205
227.61	205
227.61	205
227.61	205
227.61	205
227.61	205
227.61	205
227.61	205
190.8	205
190.8	205
190.8	205
190.8	205
190.8	205
190.8	205
190.8	205

Greenhouse Water – The closed greenhouse allows for the collection of water through transpiration of plants. Condensation will occur on the coldest surface in the greenhouse (thermal bridge aluminum mullion) and will be collected from a gutter which will be sent down to the water storage tank. Condensate will also occur on the cooling coils in each greenhouse module shaft. A drip pan is there to collect and send the condensate to the storage tank.

APPENDIX K – NATURAL HVAC

Solar chimney fan controls. The fan is turned on when a temperature exceeds $77^{\circ}F$ or when the CO_2 concentration exceeds 1300 ppm in a space.

Solar Chimney

All three supply shafts contain ground level intake louvers, and serve the second floor while in updraft mode in order to meet the large ventilation requirement of the gathering room when wind blows from the South. The shafts primarily serving floors three and four contain an additional set of louvers above the second floor plenum, allowing them to serve their respective floors.

The building was divided into over 1,000 thermal zones in order to model airflow and space conditioning driven by the wind and thermal buoyancy

APPENDIX L – INTEGRATED BULK AIRFLOW/ENERGY MODEL

06. semi-exposed roof <10deg 07. semi-exposed roof 10-30deg 08. semi-exposed roof >30deg 09. sheltered wall A MacroFlo Opening Types - IES Model With Greenhouses Imported 23 Wind Pressure Coefficients Angle of Attack MacroFlo Opening Types 0.0° 22.5° 45.0° 67.5° 90.0° 112.5° XTRN0000 External window opening Monodraught Quantum Damper XTRN0026 Reference ID 0.7 0.606 0.35 -0.041 -0.5 -0.465 XTRN0001 XTRN0002 UnderFloor Diffusers Downdraft North Description Plenum Dampers Gathering Room 02 Break Out 02 Corridor 03 Classroom NE XTRN0003 Angle of Attack XTRN0004 180.0° 202.5° 225.0° 247.5° 270.0° 292.5° XTRN0005 XTRN0006 ▼ →1 Exposure Type 01, exposed wall -0.2 -0.276 -0.4 -0.465 -0.5 -0.041 XTRN0007 03 Demo Kitchen Opening Category Custom / sharp edge orifice XTRN0008 XTRN0009 03 Classroom Interio 03 Incubation Copy Print XTRN0009 XTRN0010 XTRN0011 XTRN0012 03 Classroom SE 03 Corridor 75.00 Openable Area % 04 Director 04 Staff Area XTRN0013 XTRN0014 Edit Project Daily Profile DAY_0007 04 Reception 04 Room 047 XTRN0015 XTRN0015 XTRN0016 XTRN0017 XTRN0018 04 Room TBD 04 Room 067 04 Corridor Units Type: Profile Name: Downdraft Inlet North Equivalent orifice area 75.000 % of gross O IP XTRN0019 04 Meeting Room 04 Office DAY 0007

Modulating
Absolute ID-No units XTRN0020 Crack Flow Coefficient 12.69 cfm/(ft (in Ha)^0.6) 04 Copier Always Open Downdraft East XTRN0021 Time Value XTRN0021 XTRN0022 XTRN0023 XTRN0024 Crack Length % of opening perimete 100 1 00:00 & (to>=55)) | ((wd>225) & (wd<=315) & (to>=55)) | ((ws<7) & (to>=55)) Downdraft South 2 24:00 & (to>=55)) | ((wd>225) & (wd<=315) & (to>=55)) | ((ws<7) & (to>=55)) XTRN0025 Downdraft West Opening threshold 55.00 ٩F Plenum Inlet Cooling Plenum Inlet Heating Chimney East Chimney South XTRN0027 Degree of Opening (Modulating Profile) WEEK0109: Downdraft North 🛛 🗧 🎠 XTRN0028 XTRN0029 XTRN0030 Add Remove Include effects of wind turbulence? OK Cancel Save → Wind Pressure Coefficients 23 MacroFlo Opening Types - IES Model With Greenhouses Imported Exposure Type MacroFlo Opening Types 02. exposed roof <10deg 03. exposed roof 10-30deg XTRN0014 04 Reception 04 Room 047 A Reference ID XTRN0036 XTRN0015 04. exposed roof >30deg 05. semi-exposed wall 06. semi-exposed wall 07. semi-exposed roof <10deg 07. semi-exposed roof 10-30deg XTRN0016 04 Room TBD Description Updraft East XTRN0017 04 Room 067 XTRN0017 XTRN0018 XTRN0019 XTRN0020 04 Room 067 04 Corridor 04 Meeting Room 04 Office - → Exposure Type 09. sheltered wall 08. semi-exposed roof >30deg XTRN0021 04 Copier Opening Category Custom / sharp edge orifice Always Open Downdraft East Downdraft South Downdraft West -XTRN0022 10 sheltered mot <10dea XTRN0022 XTRN0023 XTRN0024 XTRN0025 XTRN0026 75.00 Wind Pressure Coefficients Openable Area % Angle of Attack 0.0° 45.0° 67.5° 22.5° 90.0° 112.5° Downdraft North XTRN0027 Plenum Inlet Cooling 0.156 0.05 -0.091 -0.25 0.2 -0.285 XTRN0028 Plenum Inlet Heating Chimney East Chimney South Chimney West Chimney North XTRN0029 XTRN0030 XTRN0031 Angle of Attack 180.0° 202 5° 225 0° 75.000 % of gross 247.5° 270.0° 292.5° Equivalent orifice area XTRN0032 -0.25 -0.274 -0.3 -0.285 -0.25 -0.091 UnderFloor Diffusers Gathering Ro XTRN0033 XTRN0034 WINDCATCHER X-Air 200 Crack Flow Coefficient 12.69 cfm/(ft·(in Ha)^0.6) XTRN0035 Experimental Plenum Damper Copy Print XTRN0036 XTRN0037 XTRN0038 XTRN0039 Crack Length 100 % of opening perimeter Updraft West Updraft North Chimney Low East Opening threshold -25.00 °F XTRN0040 XTRN0041 XTRN0042 XTRN0043 Chimney Low North Chimney Low West Greenhouse Cooling Greenhouse Gap Edit Project Daily Profile DAY_0268 Degree of Opening (Modulating Profile) WEEK0118: Updraft Inlet East 🔹 Units Type: Profile Name: Updraft Inlet East Metr O TP Add Remove DAY_0268

Modulating
Absolute ID: No units Time Value Include effects of wind turbulence? OK Cancel Save 1 00:00 (wd>45) & (wd<270) & (to<55) 2 24:00 (wd>45) & (wd<270) & (to<55

Sheltered Wall

A limitation of the software used to model the natural HVAC system is that it does not include the wind shading effect of the building. Therefore, wind pressure coefficients for the natural HVAC intake dampers must be altered as a function of the angle of attack. Two classifications were used select pressure coefficients for the shaft inlets: exposed wall and sheltered wall. The coefficients and damper control algorithms are shown to the right.

Accounting for obstructions and frictional resistance: The bulk airflow tool within IES does not automatically account for obstructions and friction losses; however, they can be accounted for by creating an opening with an equivalent orifice area. The procedure used to calculate the equivalent area is described below.

$$A_{o} = \frac{A_{d}}{0.62\sqrt{k}}, k = k_{duct} + k_{abs}$$
$$k_{abs} = (1 - \sigma + \left[\frac{(1 - \sigma)}{2}\right]^{.5})^{2}/\sigma^{2}$$
$$k_{duct} = L/(8w \left\{ log_{10} \left[\frac{\varepsilon}{W}}{7.4}\right] \right\}^{2})$$

→ Wind Pressure Coefficients

02. exposed roof <10deg 03. exposed roof 10-30deg

04. exposed roof >30deg 05. semi-exposed wall

Exposure Type

		S Synthesis	S	
		Abbreviation	Meaning	Units
.0°		to	Outdoor Air Temperature	Degrees Fahrenheit
4 .0°	-0.276 337.5°	wd	Wind Direction	Degrees From North
35	0.606 Close	ws	Wind Speed	Feet per Second

135

31

0

APPENDIX M – CHILLED BEAM AND RADIANT FIN TUBE DESIGN

Design Parameters					
T _{OA} [°F]	86.2				
T _{SA} [°F]	63				
T _{RA} [°F]	77				
Beam Length [ft.]	6				
T _{RA} - T _{CWS} [°F]	14				

The art of handling air

Space	Min. Outside Air [CFM]	Ventilation Sensible Cooling [BTUH]	Total Sensible Cooling Load [BTUH]	Chilled Beam Sensible Cooling [BTUH]	Sensible Cooling Capacity [BTUH/LF]	Number of Chilled Beams	Sensible Cooling Capacity [BTUH/LF]	Required Flow Rate [GPM]
Second Floor	Second Floor							
Break-Out Space	700	10584	39886	29302	4884	8	610	16
Gathering	3200	48384	122000	73616	12269	20	613	40
Third Floor	Third Floor							
Classroom	400	6048	12159	6111	1018	4	255	8
Classroom	400	6048	12300	6252	1042	4	519	14

Floor								
Director	100	1512	8670	7158	1193	2	398	6
							Total:	84

Passive Chilled Beam Selection Process:

- 1. Determine amount of sensible load to be handled by chilled beams 2. Estimate beam entering air temperature: stratified system: entering air temperature assumed to be 2°F warmer
- chilled water supply
- beam

Greenhouse Fin Tube Design- High output finned tubes are specifically designed to heat all greenhouses. These are twice as thick as any standard base board radiators making them a viable option for greenhouse environments. The fin tubes are placed along the southern wall of the greenhouses to minimize the conduction heat loss through the glazing in the winter.

Greenhouse Fin Tube Design						
Tube Size Material	Fin Size Material	Average Water Temperature [F]	Fins/ft	No of Tiers	BTU/HR- ft	
1.25 inch Sch 40 Aluminum	3.25" x 3.25" 0.025 Aluminum	180	24	2	1259	

Zone Name	Total Heating Load [BTU/hr]	Total Length [ft]
Greenhouse 1	71538	57
Greenhouse 2	71477	57
Greenhouse 3	72746	58
Greenhouse 4	299668	238

Typical Chilled Beam

Mechanical Supporting Documents – AEI Team 09-2015

- 3. Determine chilled water supply temperature must be at least greater than the room dew point temperature to avoid condensation
- 4. Select beam using temperature difference between entering air and
- 5. Determine water flow rate and pressure loss associated with selected

APPENDIX N- ENERGY USAGE

An energy and load simulation was performed using IES Virtual Environment software. A summary of the energy performance of the Vertical Farm in Milwaukee is displayed below.

Cooling Performance: 0.3-0.4 kW/ton including pump and fan energy

The baseline building was created as prescribed by AHSRAE 90.1 Appendix G. For fairness, the baseline building was modeled with greenhouses identical to the proposed building. Unfortunately, the baseline building experiences much higher interior lighting gains and does not use operable shades, resulting in significantly higher loads than the proposed building, and rendering a comparison unproductive.

combination of natural gas and biogas that amounts to significantly more than the baseline building's natural gas use. This is a result of combusted biogas being used as the heat source for an absorption chiller. The proposed building also provides significantly more outdoor air than the baseline, resulting in increased heating loads

HVAC Electrical Usage

APPENDIX O- QUAD-GENERATION COST ANALYSIS

Item	First Cost
Anaerobic Digester and Related Equipment	\$1,000,000
Biogas Pretreatment	\$165,000
Microturbine	\$333,000
Exhaust Gas Heat Exchanger	\$14,390
Oxidation & SCR Catalysts	\$4,000
CO ₂ Piping	\$15,400
CO & NOx Sensors	\$408
Total:	\$1,532,198

Annual Profits and Expenses		Unit	Rate	Cost
Offset Grid Electrical Usage	1,641,959	kW	\$0.12	\$197,035
Electricity Sold To Grid	132,041	kW	\$0.04	\$5,282
Natural Gas Reduction (Baseline - Proposed)	19,270	Therms	\$0.60	\$11,562
Solid Fertilizer	730	Yards	\$65.00	\$47,450
40% Increase in Crop Production	based on \$5/SF,	\$22,456		
Tipping Fees	4,599	Tons	\$10.00	\$45,990
Operations & Maintenance	3% of total digester cost			-\$30,000
Total:				\$299,775

Existing Site Electrical Load Assumptions

	Grow lights	Miscellaneous
W/SF	25	2
SF	7434	21581
kWh	186	43
% Of Year Operating	25%	100%
Hours	2190	8760
Annual kWh	407012	378099
Total:		785111

		Net Present
Years	Net Cash Flow	Value
0	-	-\$1,532,198
1	\$299,774.00	-\$1,243,954
2	\$299,774.00	-\$966,796
3	\$299,774.00	-\$700,298
4	\$299,774.00	-\$444,050
5	\$299,774.00	-\$197,657
6	\$299,774.00	\$39,258
7	\$299,774.00	\$267,062
8	\$299,774.00	\$486,104
9	\$299,774.00	\$696,721
10	\$299,774.00	\$899,238
11	\$299,774.00	\$1,093,965
12	\$299,774.00	\$1,281,203
13	\$299,774.00	\$1,461,240
14	\$299,774.00	\$1,634,352
15	\$299,774.00	\$1,800,805
16	\$299,774.00	\$1,960,857
17	\$299,774.00	\$2,114,753
18	\$299,774.00	\$2,262,730
19	\$299,774.00	\$2,405,016
20	\$299,774.00	\$2,541,828

Net Present Value of Quad-Generation System

Total Investment	\$ 1,532,198.00
First Year Utility Savings	\$ 299,774.72
First Year Return on Investment	20%
Simple Payback Period (Years)	5.11
Assumed Escalation Rate	4%

APPENDIX P - COOLING AND HEATING LOAD CALCULATIONS

						Cooling an	d Heating L	oad Calculat	ion -Non Gre	enhouses Sp	aces, Milwa	ukee					
				-				Cooling			-					Heating	
					Sen	sible			Latent				Design			Peak Sensible	
Floor	Zone Name	Area [ft ²] Min. Outside Air [CFM]	Outside Air [BTUh]	Peak Sensible Room Load [BTUh]	30% more than OA	Supply Air [CFM]	Outside Air [BTUh]	Peak Latent Room Load [BTUh]	Supply Air [CFM]	TRACE Total	Total Cooling Coil Load [Btuh]	Supply Air [CFM]	Outside Air [CFM]	Ventilation Load [BTUh]	Room Load [BTUh]	Total Heating Coil Load [BTUh]
Eirct B	lloor																
1	Work Shop	951	236	2855	13750	307	637	2138	1663	107	15/13	20406	637	236	17332	6633	23965
1	Mud Boom	221	32	387	2521	42	117	2138	1148	74	3668	4345	117	32	2350	269	25505
1	Volunteers	231	36	435	2576	47	119	326	1155	75	3731	4493	119	36	2644	465	3109
1	Office	95	11	133	1096	14	51	100	200	13	1296	1529	51	11	808	203	1011
1	Market Office	95	11	133	1096	14	51	100	200	13	1296	1529	51	11	808	203	1011
1	Market	3122	373	4512	31663	485	1466	3380	6244	404	37907	45798	1466	373	27393	36472	63865
1	Processing	1849	198	2395	38826	257	1797	1794	4623	299	43448	47637	1797	198	14541	17759	32300
1	Loading	799	139	1681	2600	181	120	1259	0	0	2600	5541	0	139	10208	1722	11930
1	Shipping/Receiving	728	112	1355	2308	146	107	1015	0	0	2308	4678	0	112	8225	1420	9645
1	Corridor	2055	123	1488	7400	160	343	1114	0	0	7400	10002	343	123	9033	15741	24774
1	Women	165	0	0	512	0	24	0	0	0	512	512	24	0	0	0	0
1	Men	165	0	0	512	0	24	0	0	0	512	512	24	0	0	0	0
	•	Total	: 1271	15374	104859.4	1652	4855	11516	15231.6	985	120091	146981	4627	1271	93342	80887	174229
					-												
Secon	d Floor																
2	Corridor	2935	176	1749	18828	229	1245	877	0	0	18828	21453	1200	545	43224	3231	213332
2	Break-Out Space	1067	605	6011	61233	787	4050	3013	10850	555	72083	81107	1000	605	44431	1219	45650
2	Gathering	4080	3106	30861	128032	4038	8468	15469	59365	3037	187397	246233	4100	3106	228105	3268	231373
		Total	: 3711	36872	189265	4824	12518	18482	70215	3592	259480	327340	6300	3711	272536	4487	277023
Third	Floor															-	T
3	Corridor	825	71	705	1858	92	123	354	0	0	1858	3132	130	71	5214	0	5214
3	Classroom	635	394	3915	12159	512	804	1962	4921	252	17080	24273	800	394	28935	199	29134
3	Storage	110	13	129	0	17	0	65	0	0	0	211	20	13	955	474	1429
3	Corridor	1181	/1	705	0	92	0	354	0	0	0	1151	600	/1	5214	0	5214
3	Demo Kitchen	947	484	4809	23710	629	1568	2410	9250	4/3	32960	42377	1600	484	35545	0	35545
3	Classroom	605	375	3726	31200	488	2064	1808	4089	240	35889	44034	500	375	27540	0	27540
3	Classroom	610	3/8	3750	27805	491	1843	200	4728	242	32592	40505	500	3/8	27760	480	28240
3	University incubator Office	054	. 1777	17656	5/61 10060E	2210	381	309	1308	1274	125500	8455	400	1777	4553	1301	4/85
		TOtal	. 1///	17050	100055	2310	0000	0030	24090	12/4	125590	101000	4420	1///	130303	1591	151074
Fourt	h Floor																
4	Corridor	1350	81	805	306	105	20	403	0	0	306	1640	105	81	5949	0	5949
4	Staff Area	364	62	616	9119	81	603	309	3761	192	12880	14489	600	62	4553	0	4553
4	Director	350	26	258	8670	34	573	129	200	10	8870	9865	600	26	1909	2572	4481
4	Meeting	450	100	994	12833	130	849	498	4650	238	17483	19953	600	100	7344	0	7344
4	Office Area	758	83	825	8033	108	531	413	1400	72	9433	11310	600	83	6096	0	6096
4	Reception Area	328	69	686	8830	90	584	344	3389	173	12219	13922	600	69	5067	0	5067
4	Сору	122	10	99	937	13	62	50	0	0	937	1161	70	10	734	62	796
		Total	: 350	3478	48422	455	3202	1743	13400	685	61822	70700	3070	431	25704	2634	28338

		Cooling and Heating Load Calculation -Greenhouses Spaces, Milwaukee												
I					Heating									
		Zone Name	Area [ft ²]		Sensible		Latent							
	Floor			Peak Sensible	New Peak Sensible	Supply Air	Peak Latent Room Load	TRACE Total	Total Cooling Coil Load [Btuh]	Total Heating Coil Load [BTUh]				
L				Room Load [BTUN]	Room Load [BTUN]	[CFIVI]	[BTUh]							

Green	enhouses												
2	Greenhouse 1	2242	184901	8581	265	220400	405301	228981	71538				
3	Greenhouse 2	2248	207918	31118	960	221000	428918	252118	71477				
4	Greenhouse 3	2124	206649	39609	1223	208800	415449	248409	72746				
5	Greenhouse 4	4837	1224337	844017	26050	475400	1699737	1319417	299668				
		Total:	1823805	923325	56290	1125600	2949405	2048925	515429				

All greenhouses were calculated with a supply air temperature of 65 °F. A room air temperature of 85°F and 90% relative humidity were used for cooling load calculations. The peak latent load is calculated based off the amount of transpiration in the greenhouses See Appendix K for a detailed calculation. The heating calculation loads were calculated with a room air temperature of 70°F.

Cooling Design Parameters											
Air T [°F] W [lb/lb]											
89	0.013986										
77	0.012957										
63	0.008918										
55	0.008918										
75	0.012114										
	Parameters T [°F] 89 77 63 55 75										

Heating Design Parameters	
Air	T[°F]
Outside Air	0
Room Air (2-4 Floors)	68
Supply Air (2-4 Floors)	88
Supply Air (1st Floor)	95
Room Air (1st Floor)	75

 $q_{sen} = 1.08 * CFM * (T_{room} - T_{supply})$

q_{lat} = 4840*CFM*(W_{room}-W_{supply})

The cooling and heating loads for the Vertical Farm shown are calculated for Milwaukee, WI. The Mechanical Team performed load calculations for Miami, FL for comparisons to Milwaukee site and equipment sizing.

APPENDIX Q – VENTILATION AND EXHAUST CALCULATIONS

				Venti	lation Sch	edule					
Floor	Zone Name	Classification	# Persons/1000 ft ²	Area [ft ²]	Outdoor Air Flow/ft ² [CFM/ft ²]	Zone Population [# of People]	Outdoor Airflow/Person [CFM/Person]	Breating Zone Ventilation [CFM]	Zone Air Distribution Effectiveness [%]	Minimum Outdoor Air Supply [CFM]	Design Supply Outdoor Air [CFM]
rst Floor											
1	Work Shop	Manufacturing	7	945	0.18	7	10	236	100.0	236	307
1	Corridor	Corridor	_	2055	0.06	0	0	123	100.0	123	160
1	Mud Room	Laundry	10	221	0.06	2	5	24	100.0	24	32
1	Volunteers	Break Room	25	231	0.06	6	5	43	100.0	43	56
1	Office	Office	-	100	0.06	1	5	11	100.0	11	14
1	Market Office	Office	-	100	0.06	1	5	11	100.0	11	14
1	Market	Supermarket	8	3111	0.06	25	7.5	373	100.0	373	485
1	Processing	Processing	10	1801	0.06	18	5	198	100.0	198	258
1	Loading	Shipping/Receiving	0	893	0.12	0	0	107	100.0	107	139
1	Shipping/Receiving	Shipping/Receiving	0	719	0.12	0	0	86	100.0	86	112
									V _{ot}	1213	1578
acand Ela											
	Corridor	Corridor		2025	0.06	0	0	176	100.0	176	220
2	Brook Out Space	Multi Durposo	-	1270	0.06	70	75	605	100.0	170	796
2	Gathoring	Auditorium	-	2004	0.00	202	7.5	2106	100.0	2106	/00
2	Gathering	Auditorium	-	3004	0.00	505	7.5	5100	100.0	5100	4037
hird Flooi	r Classraam		50	625	0.12	22	10	204	100.0	204	542
3	Classroom	Classroom(age 9 plus)	50	035	0.12	32	10	394	100.0	394	512
3	Corridor	Classroom (Kitchon	0	1181	0.06	0	0	/1	100.0	/1	92
3			-	947	0.12	37	10	484	100.0	484	629
Э	Classroom		50	610	0.12	21	10	5/5 270	100.0	5/5 270	468
2				010	1 U.1Z	1 31		- / 6			47/
3	Liniversity Incubator Office		7	65/	0.06	5	5	67	100.0	576 67	81
3	University Incubator Office	Office	7	654	0.06	5	5	62	100.0	62	81
3 3 ourth Flor	University Incubator Office	Office	7	654	0.06	5	5	62	100.0 V _{ot}	62 1764	81 2293
3 3 ourth Flo	or Staff Area	Office	25	654	0.06	5	5	62	100.0 V _{ot}	62 1764 62	81 2293 81
3 3 ourth Flor 4 4	or Staff Area	Office Break Room Corridor	25 0	654 337 1350	0.06	5 5 0	5	62 62 81	100.0 V _{ot}	62 1764 62 81	81 2293 81 105
3 3 ourth Flor 4 4 4	or Staff Area Director	Break Room Corridor Office	25 0	654 337 1350 358	0.06 0.06 0.06 0.06 0.06	8 0 1	5 5 0 5	62 62 81 26	100.0 V _{ot} 100.0 100.0 100.0	62 1764 62 81 26	81 2293 81 105 34
3 3 ourth Flor 4 4 4 4 4	or Staff Area Corridor Director Meeting	Break Room Corridor Office Conference Room	25 0 -	654 337 1350 358 409	0.06 0.06 0.06 0.06 0.06 0.06	8 0 1 15	5 5 0 5 5	62 62 81 26 100	100.0 100.0 100.0 100.0 100.0 100.0	62 1764 62 62 81 26 100	81 2293 81 105 34 129
3 3 ourth Flor 4 4 4 4 4 4 4	or Staff Area Corridor Director Meeting Office Area	Break Room Corridor Office Conference Room Office	25 0 - -	654 654 337 1350 358 409 799	0.06 0.06 0.06 0.06 0.06 0.06 0.06	5 5 0 1 15 7	5 5 0 5 5 5 5 5	62 62 81 26 100 83	100.0 100.0 100.0 100.0 100.0 100.0 100.0	62 1764 62 81 26 100 83	81 2293 81 105 34 129 108
3 3 ourth Flor 4 4 4 4 4 4 4 4 4 4	or Staff Area Corridor Director Meeting Office Area Reception Area	Break Room Corridor Office Conference Room Office Reception Area	25 0 - - 30	654 337 1350 358 409 799 328	0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06	8 0 1 15 7 10	5 5 0 5 5 5 5 5 5	62 62 81 26 100 83 69	100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0	62 1764 62 62 81 26 100 83 69	81 2293 81 105 34 129 108 90
3 3 0urth Flor 4 4 4 4 4 4 4 4 4 4 4	or Staff Area Corridor Director Meeting Office Area Reception Area Copy	Break Room Corridor Office Conference Room Office Reception Area Copy, Printing Room	25 0 - - 30 4	654 654 1350 358 409 799 328 122	0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06	8 0 1 15 7 10 0	5 5 0 5 5 5 5 5 5 5	62 62 81 26 100 83 69 10	100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0	62 1764 62 81 26 100 83 69 10	81 2293 81 105 34 129 108 90 13
3 3 ourth Flor 4 4 4 4 4 4 4 4 4 4 4 4	or Staff Area Corridor Director Meeting Office Area Reception Area Copy	Break Room Corridor Office Conference Room Office Reception Area Copy, Printing Room	25 0 - - 30 4	654 337 1350 358 409 799 328 122	0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06	5 5 0 1 15 7 10 0	5 5 0 5 5 5 5 5 5 5 5	62 62 81 26 100 83 69 10	100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 V	62 1764 62 81 26 100 83 69 10 431	81 2293 81 105 34 129 108 90 13 560

			xhaust S	Schedule	2			
Floor	Zone Name	Classification	Area [ft ²]	V _{exh} [CFM/ft ²]	Number of Units	Exhaust Rate [per Unit]	Minimum Exhaust Rate [CFM]	Design Exhaust Rate [CFM]
В	Women's Showers/Lockers	Locker Room	331	2	-	-	662	700
В	Men's Showers/Lockers	Locker Room	331	2	-	-	662	700
1	Women	Toilet Room	165	-	2	75	150	200
1	Men	Toilet Room	165	-	2	75	150	200
2	Women	Toilet Room	166	-	4	75	300	300
2	Men	Toilet Room	166	-	3	75	225	300
3	Women	Toilet Room	166	-	4	75	300	300
3	Men	Toilet Room	166	-	3	75	225	300
3	Demo Kitchen	Kitchen	250	0.7	-	-	175	200
4	Women	Toilet Room	166	-	2	75	150	200
4	Men	Toilet Room	166	-	2	75	150	200
4	Сору	Copy Room	130	0.5	-	-	65	70
							Total:	3670

Demand controlled ventilation is designed for all spaces. Amount of outdoor airflow is based off a midband CO_2 of 800 ppm. The amount of outdoor airflow is proportional to the CO_2 oncentration in each space.

ASHRAE 62.1 Ventilation for Acceptable Indoor Air Quality Rate Procedure

 V_{bz} = Breathing zone outdoor airflow

 A_z = Zone floor area

 P_z = Zone population

 R_p = Outdoor airflow rate per person

 R_a = Outdoor airflow rate per unit area

 E_z = Zone Air Distribution Effectiveness

$$V_{bz} = R_p P_z + R_a A_z$$
$$V_{oz} = V_{bz} / E_z$$
$$V_{ot} = \Sigma V_{oz}$$

					Watersi	de Pressu	ure Drop Ca	lculation					
Pipe	Type of Run	Length [ft]	Velocity [ft/s]	Flow Rate [GPM]	Diameter [in]	Area [in²]	Reynold's Number	Frictional Factor, <i>f</i>	Kinematic Viscosity, υ [ft ² /s]	Roughness,ε [in]	Fitting Loss Coefficient, K	Pressure Drop [ft H2O]	
Chilled	Chilled Water Pump 1												
CHWS	Elbow	-	5.00	150	3.5	9.62	8.77E+04	0.032789	1.66E-05	1.80E-03	0.9	0.350	
CHWS	Straight	12	7.52	115	2.5	4.91	9.41E+04	0.036316	1.66E-05	1.80E-03	-	1.835	
CHWS	Balancing Valve	-	7.52	115	2.5	4.91	9.41E+04	0.036316	1.66E-05	1.80E-03	3.6	3.159	
CHWS	Elbow	-	7.52	115	2.5	4.91	9.41E+04	0.036316	1.66E-05	1.80E-03	0.9	0.790	
CHWS	Balancing Valve	-	7.52	115	2.5	4.91	9.41E+04	0.036316	1.66E-05	1.80E-03	3.6	3.159	
CHWS	Straight	6	7.52	115	2.5	4.91	9.41E+04	0.036316	1.66E-05	1.80E-03	-	0.918	
CHWS	Elbow	-	7.52	115	2.5	4.91	9.41E+04	0.036316	1.66E-05	1.80E-03	0.9	0.790	
CHWS	Straight	27	7.52	115	2.5	4.91	9.41E+04	0.036316	1.66E-05	1.80E-03	-	4.129	
CHWS	Elbow	-	7.52	115	2.5	4.91	9.41E+04	0.036316	1.66E-05	1.80E-03	0.9	0.790	
CHWS	Straight	11	11.80	65	1.5	1.77	8.87E+04	0.043149	1.66E-05	1.80E-03	-	8.212	
CHWS	Elbow	-	11.80	65	1.5	1.77	8.87E+04	0.043149	1.66E-05	1.80E-03	0.9	1.947	
CHWS	Straight	16	4.25	65	2.5	4.91	5.32E+04	0.036474	1.66E-05	1.80E-03	-	0.785	

APPENDIX R – PUMP AND FAN CALCULATIONS

CHWR	Elbow	-	3.27	32	2	3.14	3.27E+04	0.039338	1.66E-05	1.80E-03	0.9	0.381
CHWR	Straight	48	3.27	32	2	3.14	3.27E+04	0.039338	1.66E-05	1.80E-03	-	1.879
											Total:	36.919

63Hz Casing 80 Supply Front 87 Outdoor 79

All pumps were sized by calculating pressure losses and volumetric flow rates produced.

A 12 ton outdoor air handling unit supply and exhaust fan were sized based off of total static pressure loss through the system

AHU-1 - Supply Fan sec [8]-1 Size 8 Horizontal Draw-Thru 12 inch AF MPress

z	125Hz	250Hz	500Hz	1 kHz	2kHz	4 kHz	8 kHz	
	82	71	78	72	57	46	39	
	87	86	92	87	82	77	72	
	82	76	81	76	75	68	54	

APPENDIX S – FIRE SUPPRESSION & LIFE SAFETY PLAN

The Mechanical Team focused on ways to ensure a safe working and learning environment for the Vertical Farm by providing a fire suppression system in the event of a fire. One fire pump will serve the entire Vertical Farm. The required flow rate and pressure needed to serve the sprinkler system were determined in order to size the pump.

Fire Pump Sizing								
Туре	Required Flow Rate [GPM]	Total Pressure Required [psi]	Available Pressure [psi]	Required Fire Pump Pressure [psi]				
Fire Pump-1	750	144	30	114				

Pressure Required	
Top Floor Required Pressure [psi]	100
Head [psi]	23.8
Pipe Loss [psi]	10
Equipment Loss [psi]	10
Total Required Pressure [psi]	143.8

Life Safety Plan:

In the case of a fire alarm evacuation, the elevator will no longer be accessible and stairwells will be the main areas of refuge. HVAC fire/smoke dampers are activated inside of the ducts that pass through fire-resistance rated walls to prevent the spread of smoke and fire.

Stairwell Pressurization: A dedicated stair pressurization fan is used to supply air to the stairwells to prevent smoke from entering when the stairwell access doors open. The figure to the right displays a section of the stairwell with a supply duct providing air to each floor.

Greenhouse Fire Prevention: A 1-hour fire-rated wall separates the greenhouse spaces from the rest of the building.

Sprinkler Spacing Requirements: Based on NFPA 13

Occupancy: Light/Ordinary Hazard

- Maximum 15 feet spacing between sprinkler heads, each head covering 130 square feet. • Maximum distance from sprinkler head to wall is 7'-6"
- Minimum distance from ceiling to sprinkler head is 1", maximum distance from ceiling is 12" •

APPENDIX T - INDOOR AIR QUALITY & ACOUSTICS

Air Quality – An air quality test was performed for both cities of Milwaukee and Miami to determine the amount of pollutants in the air. All outdoor air is used to condition each space, so it is important to analyze the quality of air used to condition. Pollutants found in the air were analyzed to determine the excess cancer risk (r_e). The excess cancer lifetime risk is the probability of developing cancer following exposure. Aggregate risk estimates cancer risks for an exposed population.

Average Ambient Concentrations (PPB)									
Pollutant	Milwaukee	Miami	PEL (PPM)	Molecular Weight	Unit Risk Factor (m³/µg)				
Benzene	18	18	10	78.1	2.65E-05				
Carbon Tetrachloride	3	3	2	153.8	9.44E-05				
Chloroform	10	10	2	119.4	1.12E-04				
Formaldehyde	20	20	3	30	1.60E-05				
Perchloroethylene	5	5	25	166	3.93E-06				
Styrene	5	5	50	104.2	2.43E-06				
Population $(P_{k,j})$	600,000	420,000							

Classroom Acoustics Study- The classrooms located on the third floor were acoustically analyzed to determine if vinyl floor tiling was appropriate to reach the desired reverberation time. The desired reverberation time for the classrooms is 0.6 seconds for mid to high frequencies. All partitions are constructed out of gypsum board on studs and the east outer wall is constructed out of CMU. Acoustic ceiling tile helps reduce the reverberation time significantly making it unnecessary to change the floor to a more absorbent material.

Surface Description	Surface Area, S	Material Description		Soun
Sufface Description	[ft ²]	Material Description		
			125	250
West Wall	143	Gypsum Board on Studs	0.29	0.1
East Wall-Windows	225	Glass: Window	0.35	0.25
East Wall-CMU	82	Concrete Block-Painted	0.1	0.05
North Wall	908	Gypsum Board on Studs	0.29	0.1
South Wall	908	Gypsum Board on Studs	0.29	0.1
Ceiling	635	Acoustic Ceiling Tile	0.7	0.66
Floor	635	Vinyl Tile on Raised Floor	0.02	0.03

Average Ambient Concentrations for various pollutants in both Milwaukee and Miami. Unit risk factor associated with each pollutant.

	Milwaukee				Miami				
Pollutant	Concentration [µg/m ³]	Excess Lifetime Risk (r _e)	P _{k,j} *C _{k,j}	Aggregate Risk (Aj)	C _j	Excess Lifetime Risk (r _e)	$P_{k,j}^{*}C_{k,j}$	Aggregate Risk (A _j)	Unit Risk Factor (m³/µg)
Benzene	57.38	1.52E-03	3.44E+07	912	57.38	1.52E-03	24099428.57	639	2.65E-05
Carbon Tetrachloride	18.83	1.78E-03	1.13E+07	1067	18.83	1.78E-03	7909714.286	747	9.44E-05
Chloroform	48.73	5.46E-03	2.92E+07	3275	48.73	5.46E-03	20468571.43	2292	1.12E-04
Formaldehyde	24.49	3.92E-04	1.47E+07	235	24.49	3.92E-04	10285714.29	165	1.60E-05
Perchloroethylene	33.88	1.33E-04	2.03E+07	80	33.88	1.33E-04	14228571.43	56	3.93E-06
Styrene	21.27	5.17E-05	1.28E+07	31	21.27	5.17E-05	8931428.571	22	2.43E-06
Total		9.33E-03				9.33E-03			

Excess Lifetime and Aggregate Risk associated for both Milwaukee and Miami climates

Absorpti	on Coeffic	ient, α		S *α (sabins)					
Frequency (Hz)				Frequency (Hz)					
500	1000	2000	4000	125	250	500	1000	2000	4000
0.05	0.04	0.07	0.09	41.47	14.30	7.15	5.72	10.01	12.87
0.18	0.12	0.07	0.04	78.75	56.25	40.50	27.00	15.75	9.00
0.06	0.07	0.09	0.08	8.20	4.10	4.92	5.74	7.38	6.56
0.05	0.04	0.07	0.09	263.32	90.80	45.40	36.32	63.56	81.72
0.05	0.04	0.07	0.09	263.32	90.80	45.40	36.32	63.56	81.72
0.72	0.92	0.88	0.75	444.50	419.10	457.20	584.20	558.80	476.25
0.03	0.03	0.03	0.02	12.70	19.05	19.05	19.05	19.05	12.70
ΣS			ΣSα=	1112.26	694.40	619.62	714.35	738.11	680.82
Avg.			Avg. α =	0.33	0.21	0.18	0.21	0.22	0.20
orption o	onstant for	r 20°C and 4	40% RH,	0	0	1.83E-04	3.26E-04	7.86E-04	2.56E-03
Sabine Reverb Time: (s) RT =			RT =	0.40	0.64	0.71	0.61	0.58	0.58
lorris-Eyring Reverb Time: (s) RT =			0.33	0.57	0.64	0.55	0.52	0.52	
Target RT(s)			RT(s)	0.8	0.7	0.6	0.6	0.6	0.6
Calculated RT (s			d <i>RT</i> (s)	0.33	0.57	0.71	0.55	0.52	0.52